Scheme I. Suggested Mechanistic Pathway for Dehydroquinate Synthase

All these results are simply accommodated by postulating that the base responsible for removal of the proton at C-6 is a peripheral oxygen of the phosphate group of the substrate DAHP itself (or, for 3 and 6, of the analogous phosphonate group). This suggestion (i) requires the enzyme to bind a conformer of DAHP that is mimicked by 6, accounting for the relatively tight binding of this analogue; (ii) explains the fact that the analogue 4 does not undergo exchange even though it is tightly bound; and (iii) explains why the *E*-vinyl homophosphonate 5 is poorly bound and does not suffer either oxidation or exchange.

This proposal has several attractive features. First, the enzyme exploits one of the strongest bases available at physiological pH: the dianionic phosphate ester group. Second, the enzyme avoids the steric problem associated with deprotonating a tertiary center where the proton is 1,3 diaxial to a hydroxyl group (at C-2). Third, the difficulty of bringing an enzymic base close to the charged phosphate side chain is side-stepped. Finally, the act of substrate deprotonation produces a better leaving group for the (presumably subsequent) departure of P_i . Several of these features have gratifying precedent, for example in the facile intramolecularly-catalyzed elimination of P_i from 3-hydroxypropionaldehyde phosphate.¹⁴

The present proposal, coupled with the recent suggestion of Bartlett and his group⁵ that the pyranose ring opening and the aldol reaction (the last two steps of Scheme I) may occur off the enzyme, helps to explain how a relatively small monomeric protein can catalyze such a complicated molecular transformation. Oxidation of DAHP (bound as in 7) at C-5 results in the facile

elimination of P_i to give the ene-one, reduction of which provides the enol pyranose that is then lost from the enzyme and rearranges rapidly and stereospecifically to DHQ. Although the evidence presented herein is only suggestive, the possibility that the phosphate group of DAHP promotes the β -elimination of P_i both accommodates all that we know about the mechanism of this unusual enzyme and reduces the number of required catalytic groups to what might reasonably exist at the active site of the enzyme. What appeared at first sight to be an impressively complex mechanism may, in fact, be ingeniously simple.

Acknowledgment. This work was supported by the National Institutes of Health and Merck Sharpe & Dohme. We are grateful to Dr. Gary Glick for helpful discussions.

Symmetric Addition of SO₂ to Linear Bi- and Trinuclear Gold(I) Compounds. Partial Oxidation To Form $[Au(\mu-(CH_2)_2PPh_2)]_2(SO_2)_2$ and $Au_2Pt(\mu-C_3S-CH_2PPh_2S)_4(SO_2)_2$

Christopher King, Dwight D. Heinrich, G. Garzon, Ju-Chun Wang, and John P. Fackler, Jr.*

Department of Chemistry and Laboratory for Molecular Structure and Bonding, Texas A&M University College Station, Texas 77843

Received May 9, 1988

A gold-gold bond forms when $[Au(\mu-(CH_2)_2PPh_2)]_2$ (Au···Au = 2.977 (1) Å) is oxidized to $[Au(\mu-(CH_2)_2PPh_2)]_2XY$ (XY = Cl₂, CH₃Br, CF₃CH₂I, (NO₂)₂, etc.) (Au-Au = 2.55-2.7 Å).^{1,2} Metal-metal bond formation may occur during the initial step of the oxidative addition³ or subsequent to metal-ligand bond formation. To further explore possible metal-metal bond formation related to this initial step, we have crystallized and structurally studied the adduct of SO₂ with $[Au(\mu-(CH_2)_2PPh_2)]_2$. SO₂ coordinates axially as a Lewis acid by removing electron

⁽¹⁴⁾ Gallopo, A. R.; Cleland, W. W. Arch. Biochem. Biophys. 1979, 195, 152. See also: Richard, J. P. J. Am. Chem. Soc. 1984, 106, 4926. Motui-DeGrood, R.; Hunt, W.; Hupe, D. J. J. Am. Chem. Soc. 1979, 101, 2182. Periana, R. A.; Motui-DeGrood, R.; Chiang, Y.; Hupe, D. J. J. Am. Chem. Soc. 1980, 102, 3423. Gouaux, J. E.; Krause, K. L.; Lipscomb, W. N. Biochem. Biophys. Res. Commun. 1987, 142, 893.

⁽¹⁾ Basil, J. D.; Murray, H. H.; Fackler, J. P., Jr.; Tocher, J.; Mazany, A. M.; Trzcinska-Bancroft, B.; Knachel, J.; Dudis, D.; Delord, T. J.; Marler, D. O. J. Am. Chem. Soc. **1985**, 107, 6908-6915.

^{(2) (}a) Murray, H. H.; Fackler, J. P., Jr.; Porter, L. C.; Mazany, A. M. J. Chem. Soc., Chem. Commun. 1986, 321-322. (b) Trzcinska-Bancroft, B.; Khan, Md. N. I.; Fackler, J. P., Jr. Organometallics 1988, 7, 993-996.

^{(3) (}a) Collman, J. P.; Hegedus, L.; Norton, J.; Finke, R. Principles and Applications of Organotransition Metal Chemistry; University of Science Books: Mill Valley, CA, 1987; p 320. (b) Low, J. J.; Goddard, III, W. A. Organometallics 1986, 5, 609-622.

Figure 1. Structure of 1 with 50% thermal ellipsoids. Oxygen atom O(2) is disordered between two positions. Au-Au = 2.838 (1), Au-S = 2.581 (5), S-O(1) = 1.401 (15), S-O(2a) = 1.468 (25), S-O(2b) = 1.221 (35), Au-C(1) = 2.083 (11), Au-C(2) = 2.084 (10) Å; Au-S-O(1) = 104.8 (6), Au-S-O(2a) = 104.2 (11), Au-S-O(2b) = 112.5 (16), O(1)-S-O(2a) = 114.6 (12), O(1)-S-O(2b) = 134.7 (19), O(2a)-S-O(2b) = 80.6 (23), S-Au-C(1) = 88.2 (3), S-Au-C(2a) = 90.5 (3), S-Au-Au(a) = 171.0 (2)°.

density from the binuclear compound without completely oxidizing it. The adduct therefore resembles the structure presumably formed during electrophilic attack (or electron loss) at a gold(I) center. A partial Au-Au bond forms in this adduct as deduced from the reduced (0.14 Å) Au-Au distance.

Partial metal-metal bond formation upon oxidation is observed in extended linear chains such as tetracyanoplatinates.⁴ The linear trinuclear compound Au₂¹Pt^{II}(μ -C,S-CH₂PPh₂S)₄ (Au-Pt = 3.034 (1) Å) is known to undergo axial oxidative addition. Two goldplatinum bonds form when this compound is oxidized⁵ to Au₂^{1I}Pt^{II}(μ -C,S-CH₂PPh₂S)₄X₂ (X = Cl, Br, or I) (Au-Au = 2.67-2.69 Å). The adduct of SO₂ with Au₂¹Pt^{II}(μ -C,S-CH₂PPh₂S)₄ shows formation of partial Au-Pt bonds. These are the first crystallographically characterized multinuclear compounds with axial coordination of SO₂. Bridging SO₂ has been observed previously in binuclear complexes.⁶

Bubbling SO₂ through CH₂Cl₂ solutions of $[Au(\mu-(CH_2)_2PPh_2)]_2$ and $Au_2Pt(\mu-C,S-CH_2PPh_2S)_4$ gave $[Au(\mu-(CH_2)_2PPh_2)]_2(SO_2)_2$, 1, and $Au_2Pt(\mu-C,S-CH_2PPh_2S)_4(SO_2)_2$, 2, respectively.⁶ Crystals of these compounds lose SO₂ over several hours.

The structures⁸ of 1 and 2 are shown in Figures 1 and 2. Compound 1 has an inversion center, and 2 is centered on a position with the disorder giving a crystallographic S_4 symmetry to the molecule. The Au-Au distance in 1 (2.838 (1) Å) and the Au-Pt distance in 2 (2.868 (1) Å) are less than in the Au(I) starting materials (2.977 (1) and 3.034 (1) Å, respectively^{1,5}) and greater than in the corresponding Au(II) compounds.^{1,5} The SO₂ moleties are disordered; electron density contour maps show three distinct peaks for the oxygen atoms in 1 and four distinct peaks in 2. The SO₂ occupies two sites equally. In 1 these sites are O(1)-S-O(2a) and O(1)-S-O(2b). In 2 these sites are O(1)-S(2)-O(2a) and O(1a)-S(2)-O(2). The librationally corrected⁹

Figure 2. Structure of 2 with 50% thermal ellipsoids. Only ipso carbons of the phenyl rings are shown. The SO₂ is disordered between O(1)-S-(2)-O(2a) and O(1a)-S(2)-O(2). Au, S(2), and Pt lie on an S_4 axis. Au-Pt = 2.868 (1), Au-S(2) = 2.567 (6), S(2)-O(1) = 1.250 (35), S(2)-O(2) = 1.474 (31), Au-C(1) = 2.088 (13), Pt-S(1) = 2.360 (3) Å; Au-S(2)-O(1) = 109.6 (14), Au-S(2)-O(2) = 103.3 (11), O(1)-S-(2)-O(2) = 68.4 (30), O(1)-S(2)-O(2a) = 102.3 (30), S(2)-Au-C(1) = 89.5 (3), Au-Pt-S(1) = 94.8 (1)^{\circ}.

sulfur-oxygen distances in 1 are 1.436, 1.482, and 1.222 Å for O(1), O(2a), and O(2b), respectively; in 2 they are 1.313 and 1.545 Å for O(1) and O(2). The S-O distance is chemically too short in S-O(2b) of 1 and S(2)-O(2) of 2; in gaseous SO₂ it is 1.43 Å, which indicates that the disorder models are imperfect. The other S-O distances are slightly longer than in free SO₂ as expected when the π^* orbital is partially populated. Clearly, however, the geometry about the sulfur atom is pyramidal rather than planar, as shown by the Au-S-O and O-S-O angles.

Coordinated SO₂ resembles the NO⁺ ligand. Its geometry is planar when bonded as a Lewis base (MNO is linear) to electron-poor transition metals and pyramidal (MNO is bent) when bonded as a Lewis acid to electron-rich metals.⁶ SO₂ is pyramidal in 1 and 2, showing that the metal is donating electrons into the SO₂ π^* LUMO. The gold orbitals in the binuclear compound mix, forming filled σ and σ^* orbitals.¹ The Au-Au distance shortens in 1 because electron density has been removed from the σ^* orbital by the two SO₂ units. A similar description of the bonding accounts for the shortened Au-Pt distance in 2.

Metal-metal separations decrease as electron density is removed from the axial orbitals of these d¹⁰-d¹⁰ and d¹⁰-d⁸-d¹⁰ compounds. In the compounds of this study adducts are bonded to two of the metal atoms, whereas during oxidative addition a substrate presumably attacks only one metal center at a time. Usôn et al.¹⁰ have added (Et₂O)Au¹¹¹(C₆F₅)₃ to just one metal center of [Au-(μ -(CH₂)₂PPh₂)]₂, giving [Au(μ -(CH₂)₂PPh₂)]₂Au(C₆F₅)₃.¹⁰ Attachment of the Au¹¹¹ to the Au¹ caused the Au¹-Au¹ separation to decrease to 2.769 (1) Å. This supports our conclusion that partial metal-metal bond formation occurs during the initial step of the oxidative addition to these polynuclear compounds, a step in which electron density is shifted nucleophilically from the metal system to the substrate.

Acknowledgment. We acknowledge the support of the Welch Foundation, the National Science Foundation (Grant CHE 8708625), and the Texas A&M Available University Fund.

Supplementary Material Available: End view of 2 showing labeling of phenyl rings and tables of crystal data, atomic coor-

⁽⁴⁾ Williams, J. M.; Schultz, A. J.; Underhill, A. E.; Carneiro, K. In *Extended Linear Chain Compounds*; Miller, J. S., Ed.; Plenum Press: New York, 1982; pp 73-118.

⁽⁵⁾ Murray, H. H.; Briggs, D. A.; Garzòn, G.; Raptis, R. G.; Porter, L. C.; Fackler, J. P., Jr. Organometallics 1987, 6, 1992-1995.

^{(6) (}a) Schenk, W. A. Angew. Chem., Int. Ed. Engl. 1987, 26, 98-109. (b) Ryan, R. R.; Kubias, G. J.; Moody, D. C.; Eller, P. G. Struct. Bonding 1981, 46, 47-100. (c) Mingos, D. M. P. Trans. Met. Chem. 1978, 3, 1-15.

⁽⁷⁾ Synthesis of 1: In a typical reaction SO₂ was bubbled for about 2 min through 15 mg of $[Au(\mu-(CH_2)_2PPh_2)]_2$ in 1.5 mL of CH₂Cl₂. The resulting red solution was filtered, layered with heptane, and stored at -5 °C for 2 days. Green/red dichroic crystals of $[Au(\mu-(CH_2)_2PPh_2)]_2(SO_2)_2$ were obtained. Synthesis of 2: This was prepared similarly. Diffusion of Et₂O saturated with SO₂ into a red (λ_{max} 490 nm) CH₂Cl₂ solution of Au₂Pt(μ -C,S-CH₂PPh₂S)₄(SO₂)₂ gave red/green dichroic octahedral crystals of Au₂Pt(μ -C,S-CH₂PPh₂S)₄(SO₂)₂ act red/green dichroic octahedral crystals of Au₂Pt(μ -C,S-CH₂PPh₂S)₄(SO₂)₂ act Algebra (Red plates were obtained from pentane diffusion into the solution.)

⁽⁸⁾ Crystal data were collected on a Nicolet R3m/E diffractometer and refined using the SHELXTL crystallographic package. All non-hydrogen atoms were refined anisotropically. Hydrogen positions were calculated assuming C-H distances of 0.96 Å. Crystallographic data: 1; sealed in epoxy, T = 25 °C, monoclinic, space group C2/c, a = 13.708 (5) Å, b = 12.639 (4) Å, c = 17.385 (3) Å, $\beta = 103.28$ (2)°, V = 2931 (1) Å³, Z = 4, R = 0.0438, $R_w = 0.0474$ on 181 variables for 1974 reflections with $F^2 > 3\sigma(F^2)$. 2; T = -60 °C, tetragonal, space group I_4/a (no. 88) with a = b = 21.500 (8) Å, c = 14.758 (5) Å, V = 6821 (3) Å³, Z = 4, R = 0.0350, $R_w = 0.0305$ on 193 variables for 1249 reflections with $F^2 > 3\sigma(F^2)$.

 ⁽⁹⁾ Schomaker, V.; Trueblood, K. N. Acta Crystallogr. 1968, B24, 63.
 (10) Usôn, R.; Laguna, A.; Laguna, M.; Tartôn, M. T.; Jones, P. G. J. Chem. Soc., Chem. Commun. 1988, 740-741.

dinates, thermal parameters, and bond angles and lengths for 1 and 2 (8 pages); tables of calculated and observed structure factors (29 pages). Ordering information is given on any current masthead page.

Total Synthesis of Ptaquilosin: The Aglycon of Ptaquiloside, a Potent Bracken Carcinogen

Hideo Kigoshi, Yoshifumi Imamura, Haruki Niwa, and Kiyoyuki Yamada*

Department of Chemistry, Faculty of Science Nagoya University, Chikusa, Nagoya 464, Japan Received November 15, 1988

Since the carcinogenicity of bracken fern (*Pteridium aquilinum*) was discovered in 1960,¹ isolation of the carcinogen(s) has been a long-standing problem. We isolated a new type of carcinogen ptaquiloside (1) from bracken in 1983, determined the novel structure,² and proved its potent carcinogenicity.³ Both ptaquiloside (1) and its aglycon ptaquilosin (2) are converted under weakly basic or neutral conditions into dienone 3,^{2a,d} which is the active form of 1 and causes base-specific cleavage of DNA.⁴ The first total synthesis of optically active ptaquilosin (20), the enantiomer of natural 2 is described herein.

(+)-Dimenthyl (1R,2R)-cyclopentane-1,2-dicarboxylate (4) prepared according to the Yamamoto method⁵ was partially hydrolyzed to give monomenthyl ester 5.⁶ The dianion generated from 5 (2.4 equiv of LDA, THF) reacted with methallyl chloride to afford a 4:1 mixture of diastereomeric esters, 6a and 6b (86%), which, after conversion into the corresponding methyl esters, was separated by chromatography on silica gel to give 7a (77%) and 7b (19%) (Scheme I). Contrary to the expectation the major diastereomer has the stereostructure 6a.⁷⁸ The methyl ester group

(4) Ojika, M.; Sugimoto, K.; Nozaki, N.; Okazaki, T.; Yamada, K., unpublished results.

(5) Misumi, A.; Iwanaga, K.; Furuta, K.; Yamamoto, H. J. Am. Chem. Soc. 1985, 107, 3343.

(6) All new compounds exhibited satisfactory spectral (IR, ${}^{1}H$ NMR, MS) and exact mass spectral data.

(7) For contrasteric alkylation, see: (1) Naef, R.; Seebach, D. Angew. Chem., Int. Ed. Engl. 1981, 20, 1030. (2) Ladner, W. Angew. Chem., Int. Ed. Engl. 1982, 21, 449. (3) Ladner, W. Chem. Ber. 1983, 116, 3413. Scheme I^a

^a (a) KOH, 30% H_2O_2 , MeOH, 50 °C, 14 h; (b) LDA (2.4 equiv), THF, -25 °C, 1 h, then CH₂=C(Me)CH₂Cl (3.2 equiv), 23 °C, 16 h; (c) CH₂N₂, ether, 23 °C, 5 min.

Scheme II^a

^a (a) KOH, *i*·PrOH/H₂O (10:1), reflux, 6 h; (b) (COCl)₂, benzene, 23 °C, 3 h; (c) SnCl₄, CH₂Cl₂, -78 °C, 2 h; (d) LiAlH₄, THF, 23 °C, 50 min; (e) imidazolium dichromate, DMF, 23 °C, 1.5 h; (f) *t*-BuMe₂SiCl, imidazole, DMF, 23 °C, 45 min; (g) ClCH₂CH₂SMe₂·I, KI, *t*-BuOK, *t*-BuOH, 23 °C, 2 h; (h) *p*-TsOH, dioxane, reflux, 1 h.

in 7a was transformed via a two-step process into the acid chloride, which was subjected to cyclization with Lewis acid to give bicyclic enone 8 (81% from 7a) (Scheme II). Conversion of 8 into enone 9 (81%) was accomplished by the following sequence: (1) reduction with LiAlH₄ and (2) oxidation with imidazolium dichromate.⁹ A single recrystallization of this material (pentane/ether) provided pure 9, mp 45-47 °C (>99% ee),¹⁰ and subsequently silvlation of 9 furnished enone 10 (quantitative). Spirocyclopropanation of 10 was effected by using 2-chloroethyldimethylsulfonium iodide11 to form a separable 3:1 mixture of two ketones, 11a (42%) and 11b (15%), the latter 11b being isomerized by acid catalysis¹² to the former **11a** (95%). Conversion of 11a to conjugated ketone 12 (82%) was performed in two straightforward steps (Scheme III). Oxidation of the double bond conjugated with the keto group in 12 afforded epoxide 13^{13a} (88%), which on reduction (Ca, liquid NH₃/THF, -78 °C) provided β -hydroxy ketone 14 (91%). The reaction of the Grignard reagent (MeMgI) with 14 proceeded highly stereoselectively from the less hindered, convex face of the substrate and gave diol 15a^{13b} (89%),

(8) Stereochemistry of **6a** and **6b** was determined as follows: **7b** could be converted into a tetrahydrofuran derivative i in two steps (1. LiAlH₄; 2. TsCl-pyr), whereas **7a** could not.

(9) Kim, S.; Lhim, D. C. Bull. Chem. Soc. Jpn. 1986, 59, 3297.

(10) The enantiomeric purity of this compound was determined by analyzing the ¹H NMR spectrum of derived 10 in the presence of chiral shift reagent $Eu(hfc)_3$.

(11) For spirocyclopropanation of saturated ketones with this reagent, see:
 Ruder, S. M.; Ronald, R. C. *Tetrahedron Lett.* 1984, 25, 5501.
 (12) Cf. Yates, P.; Helferty, P. H.; Mahler, P. Can. J. Chem. 1983, 61,

(12) Cf. Yates, P.; Helferty, P. H.; Mahler, P. Can. J. Chem. 1983, 61, 78.

(13) A small amount of the diastereomer was also obtained: (a) 7%; (b) 3%.

 ^{(1) (}a) Evans, I. A. In Chemical Carcinogens, 2nd ed.; Searle, C. E., Ed.; American Chemical Society: Washington, DC, 1984; Vol. 2, pp 1171-1204.
 (b) Hirono, I.; Yamada, K. In Naturally Occurring Carcinogens of Plant Origin; Hirono, I., Ed.; Kodansha-Elsevier: Tokyo, Amsterdam, 1987; pp 87-120.

^{(2) (}a) Niwa, H.; Ojika, M.; Wakamatsu, K.; Yamada, K.; Hirono, I.; Matsushita, K. Tetrahedron Lett. **1983**, 24, 4117. (b) Niwa, H.; Ojika, M.; Wakamatsu, K.; Yamada, K.; Ohba, S.; Saito, Y.; Hirono, I.; Matsushita, K. Tetrahedron Lett. **1983**, 24, 5371. (c) Ohba, S.; Saito, Y.; Hirono, I.; Niwa, H.; Ojika, M.; Wakamatsu, K.; Yamada, K. Acta Crystallogr., Sect. C, **1984**, 40, 1877. (d) Ojika, M.; Wakamatsu, K.; Niwa, H.; Yamada, K. Tetrahedron **1987**, 43, 5261.

^{(3) (}a) Hirono, I.; Yamada, K.; Niwa, H.; Shizuri, Y.; Ojika, M.; Hosaka,
S.; Yamaji, T.; Wakamatsu, K.; Kigoshi, H.; Niiyama, K.; Uosaki, Y. Cancer Lett. 1984, 21, 239. (b) Hirono, I.; Aiso, S.; Yamaji, T.; Mori, H.; Yamada,
K.; Niwa, H.; Ojika, M.; Wakamatsu, K.; Kigoshi, H.; Niiyama, K.; Uosaki,
Y. Gann 1984, 75, 833. (c) Hirono, I.; Ogino, H.; Fujimoto, M.; Yamada,
K.; Yoshida, Y.; Ikagawa, M.; Okumura, M. J. Natl. Cancer Inst. 1987, 79, 1143.