Scheme I. Suggested Mechanistic Pathway for Dehydroquinate Synthase

\longrightarrow

presented herein is only suggestive, the possibility that the phosphate group of DAHP promotes the β-elimination of P_{i} both accommodates all that we know about the mechanism of this unusual enzyme and reduces the number of required catalytic groups to what might reasonably exist at the active site of the enzyme. What appeared at first sight to be an impressively complex mechanism may, in fact, be ingeniously simple.
Acknowledgment. This work was supported by the National Institutes of Health and Merck Sharpe \& Dohme. We are grateful to Dr. Gary Glick for helpful discussions.

Symmetric Addition of $\mathrm{SO}_{\mathbf{2}}$ to Linear Bi - and Trinuclear Gold(I) Compounds. Partial Oxidation To Form $\left[\mathrm{Au}\left(\mu-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2}\right)\right]_{2}\left(\mathrm{SO}_{2}\right)_{2}$ and $\mathbf{A u}_{2} \mathbf{P t}\left(\mu-\mathbf{C}, \mathbf{S}-\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{~S}\right)_{4}\left(\mathrm{SO}_{2}\right)_{2}$

Christopher King, Dwight D. Heinrich, G. Garzon, Ju-Chun Wang, and John P. Fackler, Jr.*

Department of Chemistry and Laboratory for Molecular Structure and Bonding, Texas A\&M University College Station, Texas 77843
 Received May 9, 1988

A gold-gold bond forms when $\left[\mathrm{Au}\left(\mu-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2}\right)\right]_{2}(\mathrm{Au} \cdots \mathrm{Au}$ $=2.977(1) \AA$) is oxidized to $\left[\mathrm{Au}\left(\mu-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2}\right)\right]_{2} \mathrm{XY}(\mathrm{XY}=$ $\mathrm{Cl}_{2}, \mathrm{CH}_{3} \mathrm{Br}, \mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{I}$, $\left(\mathrm{NO}_{2}\right)_{2}$, etc.) $(\mathrm{Au}-\mathrm{Au}=2.55-2.7 \AA) .{ }^{1,2}$ Metal-metal bond formation may occur during the initial step of the oxidative addition ${ }^{3}$ or subsequent to metal-ligand bond formation. To further explore possible metal-metal bond formation related to this initial step, we have crystallized and structurally studied the adduct of SO_{2} with $\left[\mathrm{Au}\left(\mu-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2}\right)\right]_{2}$. SO_{2} coordinates axially as a Lewis acid by removing electron

[^0]

Figure 1. Structure of 1 with 50% thermal ellipsoids. Oxygen atom O (2) is disordered between two positions. $\mathrm{Au}-\mathrm{Au}=2.838$ (1), $\mathrm{Au}-\mathrm{S}=2.581$ (5), $\mathrm{S}-\mathrm{O}(1)=1.401(15), \mathrm{S}-\mathrm{O}(2 \mathrm{a})=1.468(25), \mathrm{S}-\mathrm{O}(2 \mathrm{~b})=1.221$ (35), $\mathrm{Au}-\mathrm{C}(1)=2.083(11), \mathrm{Au}-\mathrm{C}(2)=2.084(10) \AA$; $\mathrm{Au}-\mathrm{S}-\mathrm{O}(1)=104.8$ (6), $\mathrm{Au}-\mathrm{S}-\mathrm{O}(2 \mathrm{a})=104.2(11), \mathrm{Au}-\mathrm{S}-\mathrm{O}(2 \mathrm{~b})=112.5$ (16), O(1)-S-O$(2 \mathrm{a})=114.6(12), \mathrm{O}(1)-\mathrm{S}-\mathrm{O}(2 \mathrm{~b})=134.7(19), \mathrm{O}(2 \mathrm{a})-\mathrm{S}-\mathrm{O}(2 \mathrm{~b})=80.6$ (23), S-Au-C(1) = 88.2 (3), S-Au-C(2a) $=90.5$ (3), S-Au-Au(a) $=$ $171.0(2)^{\circ}$.
density from the binuclear compound without completely oxidizing it. The adduct therefore resembles the structure presumably formed during electrophilic attack (or electron loss) at a gold(I) center. A partial $\mathrm{Au}-\mathrm{Au}$ bond forms in this adduct as deduced from the reduced ($0.14 \AA$) Au-Au distance.

Partial metal-metal bond formation upon oxidation is observed in extended linear chains such as tetracyanoplatinates. ${ }^{4}$ The linear trinuclear compound $\mathrm{Au}_{2}{ }^{1} \mathrm{Pt}^{\mathrm{l}}\left(\mu-\mathrm{C}, \mathrm{S}-\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{~S}\right)_{4}(\mathrm{Au} \cdots \mathrm{Pt}=3.034$ (1) \AA) is known to undergo axial oxidative addition. Two goldplatinum bonds form when this compound is oxidized ${ }^{5}$ to $\mathrm{Au}_{2}{ }^{11} \mathrm{Pt}^{1 \mathrm{l}}\left(\mu \cdot \mathrm{C}, \mathrm{S}-\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{~S}\right)_{4} \mathrm{X}_{2}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, or I$)(\mathrm{Au}-\mathrm{Au}=$ $2.67-2.69 \AA$). The adduct of SO_{2} with $\mathrm{Au}_{2}{ }^{1} \mathrm{Pt}^{\mathrm{II}}(\mu-\mathrm{C}, \mathrm{S}-$ $\left.\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{~S}\right)_{4}$ shows formation of partial $\mathrm{Au}-\mathrm{Pt}$ bonds. These are the first crystallographically characterized multinuclear compounds with axial coordination of SO_{2}. Bridging SO_{2} has been observed previously in binuclear complexes. ${ }^{6}$

Bubbling SO_{2} through $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of $[\mathrm{Au}(\mu-$ $\left.\left.\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2}\right)\right]_{2}$ and $\mathrm{Au}_{2} \mathrm{Pt}\left(\mu-\mathrm{C}, \mathrm{S}-\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{~S}\right)_{4}$ gave $[\mathrm{Au}(\mu-$ $\left.\left.\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2}\right)\right]_{2}\left(\mathrm{SO}_{2}\right)_{2}$, , and $\mathrm{Au}_{2} \mathrm{Pt}\left(\mu-\mathrm{C}, \mathrm{S}-\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{~S}\right)_{4}\left(\mathrm{SO}_{2}\right)_{2}$, 2, respectively. ${ }^{6}$ Crystals of these compounds lose SO_{2} over several hours.

The structures ${ }^{8}$ of $\mathbf{1}$ and $\mathbf{2}$ are shown in Figures 1 and 2. Compound $\mathbf{1}$ has an inversion center, and $\mathbf{2}$ is centered on a position with the disorder giving a crystallographic S_{4} symmetry to the molecule. The $\mathrm{Au}-\mathrm{Au}$ distance in 1 (2.838 (1) \AA) and the $\mathrm{Au}-\mathrm{Pt}$ distance in 2 (2.868 (1) \AA) are less than in the $\mathrm{Au}(\mathrm{I})$ starting materials (2.977 (1) and 3.034 (1) \AA, respectively ${ }^{1,5}$) and greater than in the corresponding $\mathrm{Au}(\mathrm{II})$ compounds. ${ }^{1,5}$ The SO_{2} moieties are disordered; electron density contour maps show three distinct peaks for the oxygen atoms in $\mathbf{1}$ and four distinct peaks in 2. The SO_{2} occupies two sites equally. In 1 these sites are $\mathrm{O}(1)-\mathrm{S}-\mathrm{O}(2 \mathrm{a})$ and $\mathrm{O}(1)-\mathrm{S}-\mathrm{O}(2 \mathrm{~b})$. In 2 these sites are $\mathrm{O}(1)-$ $\mathrm{S}(2)-\mathrm{O}(2 \mathrm{a})$ and $\mathrm{O}(\mathrm{la})-\mathrm{S}(2)-\mathrm{O}(2)$. The librationally corrected ${ }^{9}$

[^1]

Figure 2. Structure of 2 with 50% thermal ellipsoids. Only ipso carbons of the phenyl rings are shown. The SO_{2} is disordered between $\mathrm{O}(1)-\mathrm{S}$ (2) $-\mathrm{O}(2 \mathrm{a})$ and $\mathrm{O}(1 \mathrm{a})-\mathrm{S}(2)-\mathrm{O}(2) . \mathrm{Au}, \mathrm{S}(2)$, and Pt lie on an S_{4} axis. $\mathrm{Au}-\mathrm{Pt}=2.868(1), \mathrm{Au}-\mathrm{S}(2)=2.567(6), \mathrm{S}(2)-\mathrm{O}(1)=1.250(35)$, $\mathrm{S}(2)-\mathrm{O}(2)=1.474$ (31), $\mathrm{Au}-\mathrm{C}(1)=2.088$ (13), $\mathrm{Pt}-\mathrm{S}(1)=2.360$ (3) $\AA ; \mathrm{Au}-\mathrm{S}(2)-\mathrm{O}(1)=109.6(14), \mathrm{Au}-\mathrm{S}(2)-\mathrm{O}(2)=103.3(11), \mathrm{O}(1)-\mathrm{S}-$ $(2)-\mathrm{O}(2)=68.4(30), \mathrm{O}(1)-\mathrm{S}(2)-\mathrm{O}(2 \mathrm{a})=102.3(30), \mathrm{S}(2)-\mathrm{Au}-\mathrm{C}(1)$ $=89.5(3), \mathrm{Au}-\mathrm{Pt}-\mathrm{S}(1)=94.8(1)^{\circ}$.
sulfur-oxygen distances in $\mathbf{1}$ are $1.436,1.482$, and $1.222 \AA$ for $\mathrm{O}(1), \mathrm{O}(2 \mathrm{a})$, and $\mathrm{O}(2 \mathrm{~b})$, respectively; in 2 they are 1.313 and 1.545 \AA for $\mathrm{O}(1)$ and $\mathrm{O}(2)$. The $\mathrm{S}-\mathrm{O}$ distance is chemically too short in $\mathrm{S}-\mathrm{O}(2 \mathrm{~b})$ of $\mathbf{1}$ and $\mathrm{S}(2)-\mathrm{O}(2)$ of $\mathbf{2}$; in gaseous SO_{2} it is 1.43 \AA, which indicates that the disorder models are imperfect. The other S-O distances are slightly longer than in free SO_{2} as expected when the π^{*} orbital is partially populated. Clearly, however, the geometry about the sulfur atom is pyramidal rather than planar, as shown by the $\mathrm{Au}-\mathrm{S}-\mathrm{O}$ and $\mathrm{O}-\mathrm{S}-\mathrm{O}$ angles.

Coordinated SO_{2} resembles the NO^{+}ligand. Its geometry is planar when bonded as a Lewis base (MNO is linear) to elec-tron-poor transition metals and pyramidal (MNO is bent) when bonded as a Lewis acid to electron-rich metals. ${ }^{6} \quad \mathrm{SO}_{2}$ is pyramidal in 1 and 2 , showing that the metal is donating electrons into the $\mathrm{SO}_{2} \pi^{*}$ LUMO. The gold orbitals in the binuclear compound mix, forming filled σ and σ^{*} orbitals. ${ }^{1}$ The Au-Au distance shortens in 1 because electron density has been removed from the σ^{*} orbital by the two SO_{2} units. A similar description of the bonding accounts for the shortened $\mathrm{Au}-\mathrm{Pt}$ distance in 2.

Metal-metal separations decrease as electron density is removed from the axial orbitals of these $\mathrm{d}^{10}-\mathrm{d}^{10}$ and $\mathrm{d}^{10}-\mathrm{d}^{8}-\mathrm{d}^{10}$ compounds. In the compounds of this study adducts are bonded to two of the metal atoms, whereas during oxidative addition a substrate presumably attacks only one metal center at a time. Usōn et al. ${ }^{10}$ have added $\left(\mathrm{Et}_{2} \mathrm{O}\right) \mathrm{Au}^{111}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ to just one metal center of [Au-$\left.\left(\mu-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2}\right)\right]_{2}$, giving $\left[\mathrm{Au}\left(\mu-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2}\right)\right]_{2} \mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}{ }^{10}$ Attachment of the Au^{111} to the Au^{1} caused the $\mathrm{Au}^{1}-\mathrm{Au}^{1}$ separation to decrease to 2.769 (1) \AA. This supports our conclusion that partial metal-metal bond formation occurs during the initial step of the oxidative addition to these polynuclear compounds, a step in which electron density is shifted nucleophilically from the metal system to the substrate.

Acknowledgment. We acknowledge the support of the Welch Foundation, the National Science Foundation (Grant CHE 8708625), and the Texas A\&M Available University Fund,

Supplementary Material Available: End view of $\mathbf{2}$ showing labeling of phenyl rings and tables of crystal data, atomic coor-
(8) Crystal data were collected on a Nicolet R3m/E diffractometer and refined using the SHELXTL crystallographic package. All non-hydrogen atoms were refined anisotropically. Hydrogen positions were calculated assuming C-H distances of $0.96 \AA$. Crystallographic data: 1 ; sealed in epoxy, $T=25$ ${ }^{\circ} \mathrm{C}$, monoclinic, space group $C 2 / c, a=13.708$ (5) $\AA, b=12.639$ (4) $\AA, c=$ 17.385 (3) $\AA, \beta=103.28$ (2) $)^{\circ}, V=2931$ (1) $\AA^{3}, Z=4, R=0.0438, R_{w}=$ 0.0474 on 181 variables for 1974 reflections with $F^{2}>3 \sigma\left(F^{2}\right) .2 ; T=-60$ ${ }^{\circ} \mathrm{C}$, tetragonal, space group $I 4_{1} / a$ (no. 88) with $a=b=21.500$ (8) $\AA, c=$ 14.758 (5) $\AA, V=6821$ (3) $\AA^{3}, Z=4, R=0.0350, R_{w}=0.0305$ on 193 variables for 1249 reflections with $F^{2}>3 \sigma\left(F^{2}\right)$.
(9) Schomaker, V.; Trueblood, K. N. Acta Crystallogr. 1968, B24, 63.
(10) Usōn, R.; Laguna, A.; Laguna, M.; Tartón, M. T.; Jones, P. G. J. Chem. Soc., Chem. Commun. 1988, 740-741.
dinates, thermal parameters, and bond angles and lengths for 1 and 2 (8 pages); tables of calculated and observed structure factors (29 pages). Ordering information is given on any current masthead page.

Total Synthesis of Ptaquilosin: The Aglycon of Ptaquiloside, a Potent Bracken Carcinogen

Hideo Kigoshi, Yoshifumi Imamura, Haruki Niwa, and Kiyoyuki Yamada*

Department of Chemistry, Faculty of Science Nagoya University, Chikusa, Nagoya 464, Japan

Received November 15, 1988
Since the carcinogenicity of bracken fern (Pteridium aquilinum) was discovered in 1960, ${ }^{1}$ isolation of the carcinogen(s) has been a long-standing problem. We isolated a new type of carcinogen ptaquiloside (1) from bracken in 1983, determined the novel structure, ${ }^{2}$ and proved its potent carcinogenicity. ${ }^{3}$ Both ptaquiloside (1) and its aglycon ptaquilosin (2) are converted under weakly basic or neutral conditions into dienone $3,{ }^{2, \mathrm{~d}}$ which is the active form of 1 and causes base-specific cleavage of DNA. ${ }^{4}$ The first total synthesis of optically active ptaquilosin (20), the enantiomer of natural $\mathbf{2}$ is described herein.

2

3
$(+)$-Dimenthyl ($1 R, 2 R$)-cyclopentane-1,2-dicarboxylate (4) prepared according to the Yamamoto method ${ }^{5}$ was partially hydrolyzed to give monomenthyl ester $5 .{ }^{6}$ The dianion generated from 5 (2.4 equiv of LDA, THF) reacted with methallyl chloride to afford a $4: 1$ mixture of diastereomeric esters, $\mathbf{6 a}$ and $\mathbf{6 b}(86 \%)$, which, after conversion into the corresponding methyl esters, was separated by chromatography on silica gel to give 7a (77\%) and 7b (19\%) (Scheme I). Contrary to the expectation the major diastereomer has the stereostructure 6 a. ${ }^{7,8}$ The methyl ester group
(1) (a) Evans, I. A. In Chemical Carcinogens, 2nd ed.; Searle, C. E., Ed.; American Chemical Society: Washington, DC, 1984; Vol. 2, pp 1171-1204. (b) Hirono, I.; Yamada, K. In Naturally Occurring Carcinogens of Plant Origin; Hirono, I., Ed.; Kodansha-Elsevier: Tokyo, Amsterdam, 1987; pp 87-120.
(2) (a) Niwa, H.; Ojika, M.; Wakamatsu, K.; Yamada, K.; Hirono, I.; Matsushita, K. Tetrahedron Lett. 1983, 24, 4117. (b) Niwa, H.; Ojika, M.; Wakamatsu, K.; Yamada, K.; Ohba, S.; Saito, Y.; Hirono, I.; Matsushita, K. Tetrahedron Lett. 1983, 24, 5371. (c) Ohba, S.; Saito, Y.; Hirono, I.; Niwa, H.; Ojika, M.; Wakamatsu, K.; Yamada, K. Acta Crystallogr., Sect. C, 1984, 40, 1877. (d) Ojika, M.; Wakamatsu, K.; Niwa, H.; Yamada, K. Tetrahedron 1987, 43, 5261.
(3) (a) Hirono, I.; Yamada, K.; Niwa, H.; Shizuri, Y.; Ojika, M.; Hosaka, S.; Yamaji, T.; Wakamatsu, K.; Kigoshi, H.; Niiyama, K.; Uosaki, Y. Cancer Lett. 1984, 2l, 239. (b) Hirono, I.; Aiso, S.; Yamaji, T.; Mori, H.; Yamada, K.; Niwa, H.; Ojika, M.; Wakamatsu, K.; Kigoshi, H.; Niiyama, K.; Uosaki, Y. Gann 1984, 75, 833. (c) Hirono, I.; Ogino, H.; Fujimoto, M.; Yamada, K.; Yoshida, Y.; Ikagawa, M.; Okumura, M. J. Natl. Cancer Inst. 1987, 79, 1143.
(4) Ojika, M.; Sugimoto, K.; Nozaki, N.; Okazaki, T.; Yamada, K., unpublished results.
(5) Misumi, A.:; Iwanaga, K.; Furuta, K.; Yamamoto, H. J. Am. Chem. Soc. 1985, 107, 3343.
(6) All new compounds exhibited satisfactory spectral (IR, ${ }^{1} \mathrm{H}$ NMR, MS) and exact mass spectral data.
(7) For contrasteric alkylation, see: (1) Naef, R.; Seebach, D. Angew. Chem., Int. Ed. Engl. 1981, 20, 1030. (2) Ladner, W. Angew. Chem., Int. Ed. Engl. 1982, 2l, 449. (3) Ladner, W. Chem. Ber. 1983, $116,3413$.

Scheme I^{a}

${ }^{\text {a }}$ (a) $\mathrm{KOH}, 30 \% \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{MeOH}, 50^{\circ} \mathrm{C}$, 14 h ; (b) LDA (2.4 equiv), THF, $-25^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then $\mathrm{CH}_{2}=\mathrm{C}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{Cl}\left(3.2\right.$ equiv), $23^{\circ} \mathrm{C}, 16 \mathrm{~h}$; (c) $\mathrm{CH}_{2} \mathrm{~N}_{2}$, ether, $23^{\circ} \mathrm{C}, 5 \mathrm{~min}$.

Scheme II ${ }^{a}$

${ }^{a}$ (a) KOH, i - $\mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}$ ($10: 1$), reflux, 6 h ; (b) $(\mathrm{COCl})_{2}$, benzene, $23^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (c) $\mathrm{SnCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl},-78^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (d) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 23^{\circ} \mathrm{C}$, 50 min ; (e) imidazolium dichromate, DMF, $23^{\circ} \mathrm{C}$, 1.5 h ; (f) t BuMe 2 SiCl , imidazole, DMF, $23^{\circ} \mathrm{C}$, 45 min ; (g) $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{SMe}_{2} \cdot \mathrm{I}$, $\mathrm{KI}, t-\mathrm{BuOK}, t-\mathrm{BuOH}, 23^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (h) p-TsOH, dioxane, reflux, 1 h .
in 7 a was transformed via a two-step process into the acid chloride, which was subjected to cyclization with Lewis acid to give bicyclic enone 8 (81% from 7a) (Scheme II). Conversion of 8 into enone $9(81 \%)$ was accomplished by the following sequence: (1) reduction with LiAlH_{4} and (2) oxidation with imidazolium dichromate. ${ }^{9}$ A single recrystallization of this material (pentane/ether) provided pure $9, \mathrm{mp} 45-47{ }^{\circ} \mathrm{C}(>99 \%$ ee $),{ }^{10}$ and subsequently silylation of 9 furnished enone 10 (quantitative). Spirocyclopropanation of $\mathbf{1 0}$ was effected by using 2 -chloroethyldimethylsulfonium iodide ${ }^{11}$ to form a separable $3: 1$ mixture of two ketones, 11a (42%) and 11b (15%), the latter 11b being isomerized by acid catalysis ${ }^{12}$ to the former 11a (95%). Conversion of 11a to conjugated ketone 12 (82\%) was performed in two straightforward steps (Scheme III). Oxidation of the double bond conjugated with the keto group in 12 afforded epoxide $13^{13 a}(88 \%)$, which on reduction (Ca , liquid $\mathrm{NH}_{3} / \mathrm{THF},-78^{\circ} \mathrm{C}$) provided β-hydroxy ketone 14 (91%). The reaction of the Grignard reagent (MeMgI) with 14 proceeded highly stereoselectively from the less hindered, convex face of the substrate and gave diol $\mathbf{1 5 a}^{13 \mathrm{~b}}$ (89\%),
(8) Stereochemistry of 6 a and $\mathbf{6 b}$ was determined as follows: 7 b could be converted into a tetrahydrofuran derivative i in two steps $\left(1 . \mathrm{LiAlH}_{4} ; 2\right.$. TsCl-pyr), whereas 7a could not.

(9) Kim, S.; Lhim, D. C. Bull. Chem. Soc. Jpn. 1986, 59, 3297.
(10) The enantiomeric purity of this compound was determined by analyzing the ${ }^{1} \mathrm{H}$ NMR spectrum of derived 10 in the presence of chiral shift reagent $\mathrm{Eu}(\mathrm{hfc})_{3}$.
(11) For spirocyclopropanation of saturated ketones with this reagent, see: Ruder, S. M.; Ronald, R. C. Tetrahedron Lett. 1984, 25, 5501.
(12) Cf. Yates, P.; Helferty, P. H.; Mahler, P. Can. J. Chem. 1983, 61 , 78.
(13) A small amount of the diastereomer was also obtained: (a) 7\%; (b) 3%.

[^0]: (I) Basil, J. D.; Murray, H. H.; Fackler, J. P., Jr.; Tocher, J.; Mazany, A. M.; Trzcinska-Bancroft, B.; Knachel, J.; Dudis, D.; Delord, T. J.; Marler, D. O. J. Am. Chem. Soc. 1985, 107, 6908-6915.
 (2) (a) Murray, H. H.; Fackler, J. P., Jr.; Porter, L. C.; Mazany, A. M. J. Chem. Soc., Chem. Commun. 1986, 321-322. (b) Trzcinska-Bancroft, B.; Khan, Md. N. I.; Fackler, J. P., Jr. Organometallics 1988, 7, 993-996.
 (3) (a) Collman, J. P.; Hegedus, L.; Norton, J.; Finke, R. Principles and Applications of Organotransition Metal Chemistry; University of Science Books: Mill Valley, CA, 1987; p 320. (b) Low, J. J.; Goddard, III, W. A. Organometallics 1986, 5, 609-622.

[^1]: (4) Williams, J. M.; Schultz, A. J.; Underhill, A. E.; Carneiro, K. In Extended Linear Chain Compounds; Miller, J. S., Ed.; Plenum Press: New York, 1982; pp 73-118.
 (5) Murray, H. H.; Briggs, D. A.; Garzòn, G.; Raptis, R. G.; Porter, L. C.; Fackler, J. P., Jr. Organometallics 1987, 6, 1992-1995.
 (6) (a) Schenk, W. A. Angew. Chem., Int. Ed. Engl. 1987, 26, 98-109. (b) Ryan, R, R.; Kubias, G. J.; Moody, D. C.; Eller, P. G. Struct. Bonding 1981, 46, 47-100. (c) Mingos, D. M. P. Trans. Met. Chem. 1978, 3, 1-15.
 (7) Synthesis of 1: In a typical reaction SO_{2} was bubbled for about 2 min through 15 mg of $\left[\mathrm{Au}\left(\mu-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2}\right)\right]_{2}$ in 1.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The resulting red solution was filtered, layered with heptane, and stored at $-5^{\circ} \mathrm{C}$ for 2 days. Green/red dichroic crystals of $\left[\mathrm{Au}\left(\mu-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2}\right)\right]_{2}\left(\mathrm{SO}_{2}\right)_{2}$ were obtained. Synthesis of 2: This was prepared similarly. Diffusion of $\mathrm{Et}_{2} \mathrm{O}$ saturated with SO_{2} into a red ($\lambda_{\max } 490 \mathrm{~nm}$) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathrm{Au}_{2} \mathrm{Pt}(\mu-\mathrm{C}, \mathrm{S}-$ $\left.\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{~S}\right)_{4}\left(\mathrm{SO}_{2}\right)_{2}$ gave red $/ \mathrm{green}$ dichroic octahedral crystals of $\mathrm{Au}_{2} \mathrm{Pt}(\mu-$ $\left.\mathrm{C}, \mathrm{S}-\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{~S}\right)_{4}\left(\mathrm{SO}_{2}\right)_{2} \cdot 4 \mathrm{CH}_{2} \mathrm{Cl}_{2}$. (Red plates were obtained from pentane diffusion into the solution.)

